Reg. No. :

Question Paper Code : X21072

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Second Semester Civil Engineering PH 6251 – ENGINEERING PHYSICS – II (Common to all Branches) (Regulations 2013)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. Define mobility of electrons.
- 2. Fermi temperature of a metal is 24600 K. Calculate the Fermi velocity of electrons.

Given $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$, $m = 9.1 \times 10^{-31} \text{ kg}$.

- 3. Calculate the electrical conductivity of silicon at room temperature doped with 5×10^{16} phosphorous atoms/cm³. Assume that all the impurities are ionized at room temperature. (Mobility of electrons and holes in silicon are 1350 cm³/Vs and 450 cm³/Vs respectively).
- 4. The Hall effect experiment is performed to determine the mobility of holes in a p-type silicon. The resistivity and thickness of the sample are $2.0 \times 10^5 \,\Omega$ cm and 2 mm respectively. For an applied magnetic field of 0.1 T and current of 5 μ A, the measured Hall voltage is 30 mV. Find the mobility of holes.
- 5. Compare Para and ferromagnetic materials.
- 6. What is SQUID and mention its uses ?
- 7. How does a dielectric material find its application in gas lighters ?
- 8. Calculate the electronic polarizability for argon atom. Given ϵ_r = 1.0024 at NTP and N = 2.7 \times 10²⁵ m⁻³.
- 9. What are shape memory alloys ?
- 10. How does the electrical properties of a material changes when they are reduced to nano dimension ?

X21072

		PART – B (5×16= 80 Ma	rks)
11.	a) De he	erive the expression for electrical and thermal conductivities of a metal, ence obtain the expression for Wiedemann-Franz law. (6+ (OR)	6+4)
	b) De er	efine density of energy states. Derive the expression for the density of nergy states in metals. (2-	+14)
12.	a) O se	btain an expression for density of holes in the valence band of p-type emiconductor.	(16)
		(OR)	
	b) W ex	That is Hall effect ? Derive an expression of Hall co-efficient. Describe anApperimental setup for the measurement of Hall co-efficient.(2+3)	8+6)
13.	a) i)	Define the terms orbital magnetic moment, spin magnetic moment and Bohr magneton.	(6)
	ii)	Explain the hysteresis property exhibited by ferromagnetic magnetic materials using domain theory. (OR)	(10)
	b) i)	Explain the important properties exhibited by superconductors.	(12)
	ii)	Explain the principle of magnetic levitation.	(4)
14.	a) i)	Derive an expression for the Lorentz field developed inside a dielectric material when it is placed in a electric field.	(12)
	ii)	Explain any two important dielectric breakdown mechanism. (OR)	(4)
	b) i)	Explain the phenomenon of ferroelectricity. Explain the ferroelectricity properties exhibited by $BaTiO_3$ crystal.	(12)
	ii)	How does a dielectric material behave when it is placed in a A.C. Field ?	(4)
15.	a) i)	What are the properties exhibited by nanomaterials ? Explain any one method of preparing nanomaterials.	(8)
	ii)	What are biomaterials ? Give the applications of biomaterials in ophthalmology and dentistry. (OR)	(8)
	b) i)	What are shape memory alloys ? Give their characteristic properties and applications and dentistry.	(8)
	ii)	Explain different kinds of shape memory effect with schematic diagram.	(8)